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Abstract 

A digital phonocardiogram (PCG) provides an 
opportunity for automated screening in resource-
constrained environments. As part of the George B. 
Moody PhysioNet Challenge 2022, our team, 
Life_Is_Now, developed a computational approach using 
an ensemble of deep learning classifiers for identifying 
abnormal cardiac function from PCG. A stratified 5-fold 
cross-validation was used for model development and 
evaluation for murmur and clinical outcome 
identification. The backbone of our trained classifiers is a 
modified pre-trained deep convolutional neural network 
on AudioSet-Youtube corpus (YAMNet) and transfer 
learning. The YAMNet model is modified and finetuned 
on the publicly available PhysioNet dataset. Our murmur 
and clinical outcome classifiers received a weighted 
accuracy score of 0.831 and a Challenge cost score of 
14,850 from cross-validation on the public training set. 
Our murmur scores were 0.678 and outcome score were 
10,518 on the hidden validation set. However, we did not 
receive the official score for the hidden test set as our 
entry crashed in evaluation on the test set. 

 
1. Introduction 

Cardiovascular disease (CVD) is a major cause of 
mortality worldwide [1]. CVD covers a heterogeneous 
group of heart and vessel disorders, including heart valve 
disease (HVD) and congenital heart disease (CHD). 
Cardiac auscultation using a stethoscope is an accessible 
and common screening tool that can identify patients with 
heart murmurs for referral to a specialized doctor. 
However, accurate interpretation of phonocardiogram 
(PCG) requires training and long-term practice [2]. 
Digital PCG provides an opportunity for developing 
automated screening algorithms for heart sound analysis 
and diagnosis, especially in resource-constrained 
environments. The main goal of the 2022 George B. 
Moody PhysioNet Challenge is to explore the potential of 
an objective and automated algorithm for pre-screening of 
abnormal heart function [3, 4]. Deep learning models [5], 
traditional featured-based algorithms [6], and their 
combinations [7] are successfully used for PCG analysis. 

Deep learning advances allow to perform automated high-
level feature extraction and classification with minimal 
signal pre-processing [8]. Our proposed method for the 
challenge uses ensemble of deep learning models for 
murmur detection and clinical outcome identification. 

2. Materials and Methods 

2.1. Data 

The CirCor DigiScope dataset [9] provided 5,282 PCG 
recordings from four main auscultation locations for 
1,568 patients. Auscultation locations are pulmonary 
valve (PV), aortic valve (AV), mitral valve (MV), 
tricuspid valve (TV), and other (Phc). Each recording is 
labeled manually by a human expert to identify whether a 
cardiac murmur is present, absent, or unknown at each 
auscultation location (location-based murmur label). If 
murmur is present at least in one location, the patient is 
annotated with present murmur label; if the annotator was 
unsure about the presence of a murmur in at least one 
location, the patient murmur label is annotated as 
“unknown” (patient-based murmur label). Note that PCGs 
for all locations are not available for all patients and, 
there are more than one PCG at a specific location for 
some patients. Besides murmur labels, clinical outcome 
labels (normal and abnormal) for each patient were 
included in the challenge dataset based on more 
comprehensive screening such as an echocardiogram 
interpretation [4]. Out of the CirCor dataset, 60% were 
publicly available as training set (942 patients and 3,163 
recordings), 10% were put aside as hidden validation, and 
30% as hidden test set. Please refer to [4, 9] for more 
details about the challenge and the associated data.  

To have a more generalizable model, a stratified 5-fold 
cross-validation were used over both murmur and 
outcome labels. More specifically, we created a joint 
outcome-murmur label by combining both labels together 
and used stratified splitting over new label. Table 1 shows 
the details about the number of patients and PCG length 
at every fold. As can be seen, this length varies across 
patients. A further 3,454 PCGs from the 
PhysioNet/Computing in Cardiology Challenge 2016 
(now called the George B. Moody PhysioNet Challenge) 
were used to create a complementary model for outcome 
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identification [3, 10].  

 
Table 1. The details of every fold’s data using stratified 5-
fold cross-validation. The number of patients for each 
label as well as minimum, maximum, and median length 
of the PCGs in seconds are included. 

2.2. Methods 

A pre-trained deep convolutional neural network 
(CNN) model, YAMNet, was utilized for transfer 
learning in this study [11]. This model takes audio 
waveform as input and makes independent predictions for 
521 audio events. Audio events include heart and 
respiratory sounds (e.g., breathing, wheeze, heart 
murmur, and cough) as well as relevant noise sources 
(e.g., background noises, baby/infant cry, and human 
sounds) from Google AudioSet Ontology [12]. YAMNet 
uses the MobileNet v1 [13] architecture with a 0.98 
seconds audio segment sampled at 16 kHz. Raw audios 
convert to Mel spectrogram with a window length of 25 
milliseconds, an overlap of 15 milliseconds, and 64 
frequency bands covering the range 125-7500 Hz. 
Therefore, input to YAMNet will be 96×64 Mel 
spectrogram images.  

2.2.1 Pre-processing 

For murmur detection, all available recording locations 
except Phc are combined with the associated location-
based murmur label for training. Furthermore, the 
majority class (i.e., absent) was randomly undersampled 
by factor of four as it was identified in our experiments. 
For outcome identification, only PCGs recorded on AV 
location were used for training. To pre-process data for 
YAMNet, PCGs are resampled to 16 kHz and segmented 
with a window length of 0.98 seconds with 50% overlap.  

2.2.2. Murmur Detection 

For transfer learning of YAMNet in murmur detection, 
the last three layers (fully connected, softmax, and 
classification layers) were removed and replaced for 3-
class classification (e.g., absent, presence, unknown). Of 
note, present, unknown, and absent class weights were set 
to 5, 3, and 1, respectively. The modified YAMNet was 
trained with Adam stochastic optimizer (mini-batch size 

of 32, shuffling of the training set every epoch, the initial 
learning rate of 0.0001, max epochs of 20, early stopping 
if the loss on the validation set is larger than or equal to 
the previously smallest loss for four times). During 
training phase five models were trained using training and 
validation folds listed in Table 2. In our proposed 
approach, every PCG recording is split into a window 
length of 0.98 seconds; therefore, there are multiple 
windows per recording. However, since the length of the 
PCG recordings is not the same for every patient and 
recording location, there is a different number of 
windows per recording. Each window is considered as a 
training data in the training phase, and the model 
produces multiple murmur labels (one label per window) 
per recording in the detection phase. Maximum voting 
among windows is used to produce only one output per 
recording. With only one output per recording, there are 
multiple auscultation recordings and five models, and 
another maximum voting is performed to find one output 
for every patient. 

Model Training Folds Validation Fold Test Fold 
1 0,1,2 3 4 
2 1,2,3 4 0 
3 2,3,4 0 1 
4 3,4,0 1 2 
5 4,0,1 2 3 

Table 2. Training folds as well as validation and test folds 
for developing five models for murmur detection. 

2.2.3. Outcome Identification 
For outcome identification, an ensemble of following 

three models is formed by maximum voting:  
• For transfer learning of YAMNet in outcome 

identification, the last three layers were modified for 
2-class classification (Normal and Abnormal). Then, 
modified YAMNet was trained using data from folds 
0, 1, and 2. Folds 3 and 4 were used as validation and 
test folds, respectively. Adam stochastic optimizer 
with a mini-batch size of 16 and initial learning rate of 
1e-7 was used for training for one epoch. Of note, the 
weights of all layers except the last three layers were 
frozen during training. Prevalence of normal and 
abnormal classes was used to set class weights in the 
last classification layer. 

• A modified YAMNet for the 2-class classification 
explained above was trained with 80% and 20% of 
available PCGs from PhysioNet/Computing in 
Cardiology Challenge 2016 as a training and 
validation set. Class weights in the last classification 
layer were set based on the prevalence of normal and 
abnormal classes in the training data. Adam optimizer 
with the mini-batch size of 64, training data shuffling 
at every epoch, max epochs of 10, and an initial 
learning rate of 0.0001 was used for model training. 
Freezing the weights of the first 40 layers produced 
the best the results. 
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• The top performing pre-trained model in the 
Physionet/Computing in Cardiology Challenge 2016 
by Potes et al. [7] was slightly changed as a third 
model for outcome identification. In this model, 
outputs of an AdaBoost-abstain classifier (AdaBoost) 
and a CNN classifier (CNN) were combined using the 
following rule to produce Normal and Abnormal, 
where the corresponding threshold (thr1 and thr2) in 
the original algorithm were tuned to maximize the 
2016 challenge score: 

if (AdaBoost > thr1) OR (CNN>thr2) then      
Abnormal PCG 

Else                                                                   (1) 
Normal PCG 

end if 
 We used the above thresholds to maximize the 2022 
Challenge cost score in available data in folds 0, 1, and 2. 
In summary, the same pre-trained models with optimized 
thresholds based on 2022 challenge data (thr1= 0.28 and 
thr2= 0.47) is used to form the third model. Ensemble of 
three models on all available PCG recordings recorded in 
different locations for a specific patient using maximum 
voting will be used for outcome identification. All pre-
processing and model development were performed using 
MATLAB R2022a. 

2.3. Model Evaluation 

There are two classifications tasks for murmur 
detection and outcome identification in this challenge. 
For the murmur classification, the loss function was a 
weighted average of accuracy where the weight of the 
present class is five, the weight of the unknown class is 
three, and the weight of the absent class is one. For the 
outcome classification, a Challenge cost score is provided 
by the PhysioNet challenge organizers. Please refer to [4] 
for details of evaluation metrics. The average and 
standard deviation of each model in 5-fold cross-
validation are used to select the best models in our 
experiments for evaluation on hidden validation and test 
sets in the official phase of the challenge. 

3. Results 

Challenge scores for murmur detection and outcome 
identification in training and validation are reported in 
Tables 3 and 4. Our entry was not scored on the test set 
due to a crash in the evaluation code. Furthermore, 
average of F-measure and accuracy for present, unknown, 
and absent classes across 5-fold are shown in Figure 1.  

4. Discussion and Conclusion 

Several approaches, including transfer learning with 
YAMNet and VGGish [11], were explored to find the 
best model. VGGish is a CNN architecture that outputs a 

128-dimensional feature vector for each PCG as an input.  
Furthermore, YAMNet and VGGish were used as 

feature extractors across four auscultation recordings and 
fed to different classification configurations such as 
parallel Long Short-Term Memory (LSTM). In parallel 
LSTM, one model is trained for each PCG location and 
then all outputs of parallel channels are merged to 
produce one representation for every patient. Then the 
merged output is trained using three dense layers and a 
final classification layer. We evaluated multiple 
optimizers, batch size, number of units at each channel, 
and regularization methods for all our experiments. Our 
best performing model in 5-fold cross-validation was the 
transfer learning using modified YAMNet. One challenge 
with parallel LSTM was missing auscultation location for 
some patients. To address this challenge, the missing 
PCG locations were replaced by one of the available 
auscultation locations or with zero vectors. Another 
challenge was differences in the length of PCG 
recordings across patients where we needed to crop long 
recordings with the length of the shortest recording, 
which led to information loss. 

Through our exploration, YAMNet performed better 
than VGGish in all explored configurations. We believe a 
smaller number of trainable parameters in YAMNet 
compared to VGGish makes it a better option for settings 
with limited training data. Also, the smaller number of 
trainable parameters in YAMNet makes training faster 
than VGGish. In contrast to parallel LSTM, where all 
PCG locations for a specific patient are fed as one 
training data, different auscultation recordings were 
considered independent training data in our best-
performing model for murmur detection. Therefore, more 
data was available to train a model with higher 
performance. This observation is consistent with training 
independent modified YAMNet models for each 
recording location. In our exploration, we found outcome 
identification using deep learning more challenging than 
murmur detection. A modified YAMNet trained on the 
Physionet/Computing in Cardiology Challenge 2016 
showed a proper convergence in the loss function and 
promising Challenge cost score in training and validation 
on 2016 challenge data. However, such convergence was 
not present when we trained the same model on available 
data for 2022 challenge. A better understanding of the 
process for labeling clinical outcomes in the 2022 
challenge dataset might help to better explain this 
observation. After listening to PCGs in the training data, 
we noticed noisy segments, including ambient noise (e.g., 
baby cries and human voice) and friction/abrasion 
between the recording device and the skin/chest. Filtering 
unwanted noise can potentially enhance murmur 
detection and outcome identification. Therefore, we plan 
to explore the impact of denoising of recordings on model 
performance. Also, data augmentation for the proposed 
classification tasks considering a limited number of 
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training data needs to be explored.  
This article used an ensemble of deep learning models 

for murmur detection and clinical outcome identification 
using PCG. The promising results of the internal cross-
validation on the public training and hidden validation 
indicate the potential of deep learning models for 
automated PPG analysis for murmur screening in 
resource-constrained environments. However, screening 
algorithm for clinical outcome identification needs to be 
improved.  

 
Figure 1. Average of F-measure and accuracy for present, 
unknown, and absent classes across 5-folds. 

Training Validation Test Ranking 
0.831±0.022 0.678 NS NS 

Table 3. Weighted accuracy metric scores (official 
Challenge score) for our final selected entry (team 
Life_Is_Now) for the murmur detection task, including 
the ranking of our team on the hidden validation set. We 
used 5-fold cross validation on the public training set and 
repeated scoring on the hidden validation set. NS for one-
time scoring on the hidden test set and ranking indicates 
our entry was not officially scored because of a crash in 
our evaluation code. 

Training Validation Test Ranking 
14,850±16.73 10,518 NS NS 

Table 4. Cost metric scores (official Challenge score) for 
our final selected entry (team Life_Is_Now) for the 
clinical outcome identification task, including the ranking 
of our team on the hidden validation set. We used 5-fold 
cross validation on the public training set and repeated 
scoring on the hidden validation set. NS for one-time 
scoring on the hidden test set and ranking indicates our 
entry was not officially scored because of a crash in our 
evaluation code. 
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